The Laplacian Polynomial and Kirchhoff Index of the k-th‎ Semi Total Point Graphs

نویسنده

  • Z. Mehranian Department of Mathematics, University of Qom, Qom, Iran
چکیده مقاله:

The k-th semi total point graph of a graph G, , ‎is a graph‎ obtained from G by adding k vertices corresponding to each edge and‎ connecting them to the endpoints of edge considered‎. ‎In this paper‎, a formula for Laplacian polynomial of in terms of‎ characteristic and Laplacian polynomials of G is computed‎, ‎where is a connected regular graph‎.The Kirchhoff index of is also computed‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the laplacian polynomial and kirchhoff index of the k-th‎ semi total point graphs

the k-th semi total point graph of a graph g, , ‎is a graph‎ obtained from g by adding k vertices corresponding to each edge and‎ connecting them to the endpoints of edge considered‎. ‎in this paper‎, a formula for laplacian polynomial of in terms of‎ characteristic and laplacian polynomials of g is computed‎, ‎where is a connected regular graph‎.the kirchhoff index of is also computed‎.

متن کامل

the resistance distance and the kirchhoff index of the $k$-th semi total point graphs

the $k$-th semi total point graph $r^k(g)$ of a graph $g$, is a graph obtained from $g$ by adding $k$ vertices corresponding to each edge and connecting them to endpoint of edge considered. in this paper, we obtain formulae for the resistance distance and kirchhoff index of $r^k(g)$.

متن کامل

THE RESISTANCE DISTANCE AND KIRCHHOFF INDEX OF THE k-TH SEMI-TOTAL POINT GRAPHS

The k-th semi-total point graph R(G) of a graph G, is a graph obtained from G by adding k vertices corresponding to each edge and connecting them to the endpoints of the edge considered. In this paper, we obtain formulas for the resistance distance and Kirchhoff index of R(G).

متن کامل

On Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs

Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...

متن کامل

Computing the additive degree-Kirchhoff index with the Laplacian matrix

For any simple connected undirected graph, it is well known that the Kirchhoff and multiplicative degree-Kirchhoff indices can be computed using the Laplacian matrix. We show that the same is true for the additive degree-Kirchhoff index and give a compact Matlab program that computes all three Kirchhoffian indices with the Laplacian matrix as the only input.

متن کامل

Topological indices of k-th subdivision and semi total point graphs

Graph theory has provided a very useful tool, called topological indices which are a number obtained from the graph $G$ with the property that every graph $H$ isomorphic to $G$, value of a topological index must be same for both $G$ and $H$. In this article, we present exact expressions for some topological indices of k-th subdivision graph and semi total point graphs respectively, which are a ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره Supplement 1

صفحات  7- 15

تاریخ انتشار 2014-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023